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Abstract. Ground-state phase diagram of the one-dimensional bond-random S = 1 Heisenberg antiferro-
magnet is investigated by means of the loop-cluster-update quantum Monte-Carlo method. The random
couplings are drawn from a rectangular uniform distribution. We found that even in the case of extremely
broad bond distribution, the magnetic correlation decays exponentially, and the correlation length is hardly
changed; namely, the Haldane phase continues to be realized. This result is accordant with that of the
exact-diagonalization study, whereas it might contradict the conclusion of an analytic theory founded in a
power-law bond distribution instead. The latter theory predicts that a second-order phase transition occurs
at a certain critical randomness, and the correlation length diverges for sufficiently strong randomness.

PACS. 75.10.Jm Quantized spin models – 75.10.Nr Spin glass and other random models –
75.40.Mg Numerical simulation studies

1 Introduction

In quantum statistical mechanics, the effect of random-
nesses remains non-trivial, even though they do not intro-
duce any frustrating interactions. From the path-integral
point of view, random quantum system is regarded as a
certain classical system, where the randomness distributes
along the real-space directions, while the interaction along
the imaginary-time direction is fixed to be uniform. Hence,
it is expected that the anisotropy between the real-space
and the imaginary-time directions would cause an exotic
phase which has not yet been found in the studies of classi-
cal random systems [1]. In fact, the ground-state magnetic
transition of the random transverse Ising model shows a
significant anisotropy between these directions [2–4]. The
anisotropy results in an unique critical phenomena, where
the dynamical critical exponent diverges at the transition
point.

It would be notable that the above example is merely
of one-body problem, because the one-dimensional trans-
verse Ising model is transformed to the free spinless
fermion model with the Jordan-Wigner transformation.
Random many-body systems would be more exotic, and
have been attracting considerable attention recently. In
particular, the one-dimensional S = 1/2 random Heisen-
berg chain has been studied for such randomnesses as
the random magnetic field [5–7], the random bond [8,9]
and the X-Y -symmetric random exchange [6,10]. Vari-
ous theoretical methods, that is, the real-space decima-
tion method, the bosonization technique and the numer-
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ical simulation, have been employed in these studies. In
the case of the random bond, the real-space decimation
method [11,12] is particularly useful, and yields compre-
hensive understanding of the system [8]: it was found that
the so-called random-singlet phase is realized for the in-
finitesimal amount of the bond randomness; see the phase
diagram in Figure 1a. In the random-singlet phase [6,8],
the spin-correlation decays in the form ∼ 1/r2 (note that
without any randomnesses it decays as ∼ 1/r), and the
magnetic susceptibility diverges in the form,

χ(T ) ∼
1

T log2(Ω/T )
, (1)

at low temperatures (the parameter Ω denotes the width
of the random-bond distribution). It is noteworthy that
the susceptibility diverges at low temperatures, even
though the ground state is off-critical. This singularity is
known as the Griffiths-McCoy singularity [16,17], which
was first proposed for the dynamics of classical random
systems.

It is suggestive that the real-space decimation method
fails for the cases other than S = 1/2. Its failure is rea-
sonable in the sense that the ground state properties are
different qualitatively between the half-odd-integer- and
the integer-spin chains. This difference was conjectured
theoretically by Haldane [18]. He claimed that the inte-
ger (half-odd-integer) spin chain shows massive (gapless)
magnetic excitation above the ground state, and the mag-
netic correlation decays exponentially (obeying the power
law) in the ground state. The massive magnetism, such as
the ground state of the S = 1 Heisenberg chain, is beyond



336 The European Physical Journal B

(a)

(b)

(c)

0

0

0
∆

1

1

1

Random-singlet 

phase

1-d Heisenberg 

antiferromagnet

Haldane phase

Haldane phase

Random-singlet 

phase

gapless phases

Griffiths-McCoy 

region of the 

Haldane phase

∆

∆

Fig. 1. Ground-state phase diagrams for the bond-random
antiferromagnetic chain proposed so far. (a) The diagram for
the S = 1/2 chain determined with the real-space renormal-
ization group method [8] and the bosonization technique [6].
This conclusion is fairly established. (b) The same diagram
but for the S = 1 magnet concluded in the present work and
the previous exact-diagonalization study [13]. (c) The same as
(b) but was determined with the real-space-decimation method
[14,15]. The interpretation of the result in terms of ours is not
straightforward, because the method uses a power-law bond
distribution instead.

the scope of the previous analytic techniques, and is of
current interest [13,14,19,20].

Here, we study the one-dimensional bond-random S =
1 antiferromagnet whose Hamiltonian is given by,

H =
L∑
i=1

JiSi · Si+1. (2)

The operators {Si} denote the S = 1 spin operators acting
on the site i. The periodic boundary condition SL+1 = S1

is imposed. The bonds {Ji} are distributed independently
with respect to the probability distribution, see Figure 2,

P∆(J) =
1

2∆
(Θ(J − 1 +∆)−Θ(J − 1−∆)). (3)

(The function Θ(x) denotes the step function.) The pa-
rameter ∆ governs the strength of the randomness. The
randomness ∆ = 1 describes the case of the extremely
broad bond distribution, where infinitesimally weak bond
may appear. We have investigated the Hamiltonian with
the quantum Monte-Carlo method with use of the loop-
cluster-update algorithm [21]. The loop-cluster-update al-
gorithm is efficient especially at low temperatures.

P(J)

J
0 1 11 +∆−∆

1/(2∆)

Fig. 2. The probability distribution of the bond strength {Ji}.
The randomness ranges as 0 ≤ ∆ ≤ 1. At ∆ = 1, the distri-
bution becomes extremely broad; namely, infinitesimally weak
bond appears.

We show that even for extremely broad bond distri-
bution such as ∆ = 0.9, the magnetic correlation length
continues to be unchanged. Namely, the long-range cor-
relation is not affected by the randomness. The result
indicates the stability of the Haldane state against the
randomness; see our phase diagram in Figure 1b. This
conclusion supports the suggestion of the previous exact-
diagonalization study [13] by the present author, while it
might be rather inconsistent with the analytical theories
[14,15]. (It is not so straightforward to interpret the result
in terms of ours, because in the theories, a power-law bond
distribution is used, whose distribution is broader than
ours.) These theories state that for sufficiently strong ran-
domness, gapless phases such as the Griffiths-McCoy and
the random-singlet phases would appear; see Figure 1c.
The exact-diagonalization method has an advantage that
we can simulate the ground-state eigenstate directly, al-
though the tractable system size L = 14 is rather limited.
We stress that the present Monte-Carlo analysis treat-
ing system sizes up to L = 64 compensates our previous
exact-diagonalization study [13].

The present paper is organized as follows. In the next
section, details of our simulation and the numerical results
are presented. In the last section, we give summary and
discussions.

2 Numerical results

In this section, we investigate the ground-state phase dia-
gram of the Hamiltonian (2) numerically. We focus on the
situation of very strong randomness ∆ ∼ 1.

2.1 Details of the numerical simulation

We have employed the quantum Monte-Carlo method with
the loop-cluster-update algorithm [21]. The loop-cluster
algorithm was first proposed for the S = 1/2 magnet,
see the article [22] for a review. The algorithm for the
case S = 1 was formulated in the article by Kawashima
[23]. We followed his formulation: as in the conventional
quantum Monte-Carlo method, the quantum system (2) is
mapped to a classical spin system with the Suzuki-Trotter
decomposition [24]. The spin flip of the resultant classical
system is proceeded in a global manner. At each Monte-
Carlo step, all the spins are decomposed into clusters,
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Fig. 3. Plot of the magnetic correlation for ∆ = 0 and the
system sizes L = 16 and 32. The dashed line shows the decay
of the correlation length ξ = 6.2 estimated previously [26].

and the spins belonging to an identical cluster is either
flipped or un-flipped simultaneously with the probability
p = 0.5.

The loop-cluster scheme reduces the autocorrelation
time considerably. It is reported [25] that for the pure
S = 1 Heisenberg chain, the autocorrelation becomes
102 ∼ 104-times shorter than that of the conventional lo-
cal update method. Moreover, the autocorrelation time is
independent on the Trotter number, and remains of the
order unity. This advantage enables us to simulate at
low temperatures without consuming huge Monte-Carlo
steps. Owing to this, even at very low temperatures, we
could concentrate on the average over the random sam-
ples rather than the estimation of the thermal averages
for each sample.

Throughout the present study, we simulated 200 ran-
dom samples, and for each sample we generated 104

Monte-Carlo steps – preceded by the 103 initial updates –
so as to evaluate thermal averages. These sets of simula-
tions are carried out for the Trotter numbers N = 64, 96
and 128. The final plots shown below are those extrapo-
lated for N →∞ with use of these three data.

2.2 Numerical results for the pure magnet ∆ = 0

We present the results for ∆ = 0; that is, the case with-
out any randomnesses. These results should be contrasted
with those in the presence of the randomness∆ 6= 0 shown
afterwards.

In Figure 3, we show the logarithmic plot of the mag-
netic correlation C(i) for various temperatures;

C(i) = 〈Sz1S
z
1+i〉. (4)

Here, the bracket 〈· · · 〉 denotes the thermal average. We
observe that the correlation decays exponentially, and the
correlation length develops as the temperature decreases.
Even at very low temperatures, the magnetic correlation
decays exponentially. That is, the magnetism is disordered

Fig. 4. Plot of the magnetic susceptibility for ∆ = 0. The
inset shows the susceptibility for wider range of temperature.

even at the ground state: this behavior is consistent with
the prediction by Haldane [18] as is introduced in the pre-
vious section. The correlation length and the magnetic
excitation gap are estimated numerically as ξ = 6.2 and
∆E = 0.41049(2) [26], respectively. The correlation length
in Figure 3 is accordant with this estimate. In Figure 4,
we plotted the the susceptibility χ(T ) against the tem-
perature T . Our result recovers the plot appearing in the
article [27]: at high temperatures, the susceptibility in-
creases as the temperature decreases following the Curie
law χ(T ) ∝ 1/T On the contrary, bellow the temperature
T ∼ 1, the susceptibility becomes suppressed rapidly. This
suppression is common to the magnetism with magnetic
excitation gap. The drop-down temperature indicate the
magnitude of the excitation gap; note that the Haldane
gap mentioned above and the suppression temperature in
Figure 4 are comparable.

2.3 Results for strong randomness ∆ ∼ 1

First, we show the results for the very broad bond dis-
tribution ∆ = 0.9. In Figures 5 and 6, we presented the
log and log-log plots of the magnetic correlation Cav(i),
respectively;

Cav(i) = [〈Sz1S
z
1+i〉]av, (5)

where the bracket [· · · ]av denotes the random-sampling
average. As is shown in the figures, the long-range form
of the correlation apparently suits the exponential form
rather than the power-law one: in the log plot in Figure 5,
the correlation-function data form a straight line for a
wide range of the distance i. In the log-log plot in Figure 6,
on the contrary, the data are curved. In the latter figure,
we showed the decay form ∼ 1/r2 as a dashed line whose
form should be realized in the random-singlet phase. We
see no such sector that is fitted by the dashed slope.

We conclude that the magnetic correlation decays
exponentially even for very broad bond distribution.
Moreover, the correlation length is kept hardly changed;
compare Figure 5 with Figure 3. (We observe that the
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Fig. 5. Logarithmic plot of the magnetic correlation for ∆ =
0.9 and the system sizes L = 16 and 64. The dashed line indi-
cates the decay rate ξ = 6.2 [26], which describes asymptotic
form for the system ∆ = 0.

Fig. 6. Log-log plot of the magnetic correlation for ∆ = 0.9
and the system sizes L = 16 and 64. We also show the decay
form ∼ 1/r2 as a dashed line which should succeed in fitting
the data for the random-singlet phase.

correlation length is slightly stretched by the randomness.
This stretch occurs only in the vicinity of the extreme
point ∆ = 1. It would be interesting that the randomness
contributes the magnetic order to be stabilized.) We found
that the Haldane ground state is very stable against the
randomness. Note that the analytic theory predicts that
for sufficiently strong randomness, the correlation length
should diverge [14,15]. The present result, however, indi-
cates that the correlation length is not changed very much
until at the extreme point ∆→ 1.

As is shown above, the bond randomness does not in-
fluence the ground state properties very much. The sus-
ceptibility, on the other hand, suffers from the disorder;
see Figure 7. We see that the susceptibility survives down
to very low temperatures; compare this plot with that in
Figure 4. The susceptibility starts to drop at T ∼ 0.1.
This result shows that the magnitude of the excitation
gap is reduced considerably by the bond randomness. This
tendency is understood as follows: as the randomness is

Fig. 7. Plot of the magnetic susceptibility for ∆ = 0.9.

Fig. 8. Logarithmic plot of the magnetic correlation for ∆ =
0.7 and the system sizes L = 16 and 32. The dashed line indi-
cates the decay rate ξ = 6.2 [26], which describes the asymp-
totic form for the system ∆ = 0.

turned on, the weak bonds of the strength Jmin ∼ 1−∆
can appear; remind the probability distribution of the
bond strength (3). Around the weak bond, the magnetic
excitation, that is, the triplet magnon, costs the least en-
ergy of the order Jmin, which is apparently smaller than
that of the pure system ∼ J . Because the excitation states
are magnetic, the magnetic susceptibility survives down to
the temperature Jmin.

In fact, in Figure 7, we observe that the susceptibility
starts to drop at T ∼ 0.1, which is comparable to the esti-
mate of the above argument Jmin ∼ 0.1. The crucial point
to be noted here is that the excitation states are sensitive
to the bond randomness, whereas the ground state is not.

Finally, we show the results for ∆ = 0.7; see Figures 8
and 9.

In Figure 8, we plotted the correlation function. The
behavior of the correlation function is quite similar to
those for ∆ = 0 and 0.9. Namely, even at very low tem-
peratures, the correlation decays exponentially, and the
ground-state correlation length is kept to be ξ ∼ 6.2 as
well. Surprisingly, the correlation-function data are quite
similar to those for ∆ = 0, so that these are hardly
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Fig. 9. Susceptibility is plotted for the randomness ∆ = 0.7
and L = 16 and 32

distinguishable. In fact, we found that these character-
istics continue for the full range of the randomness. The
above suggests the remarkable stability of the Haldane
state against the bond randomness. We therefore pro-
pose the ground state phase diagram as in Figure 1b. In
Figure 9, we plotted the susceptibility. The susceptibility
drops rapidly below the temperature T ∼ 0.2. This drop
down temperature is higher than that for ∆ = 0.9; the
magnetic excitation gap recovers to open as the strength
of the randomness is reduced. We actually confirmed this
tendency for various randomnesses, and that the variance
is systematic. This fact seems to contradict to the picture
shown in Figure 1c, where a singularity should occur at
the transition point.

3 Summary and discussions

We have investigated the one-dimensional bond-random
S = 1 antiferromagnet whose ground-state phase diagram
has been controversial so far. We employed the quantum
Monte-Carlo method by use of the loop-cluster-update al-
gorithm [21,23]. The autocorrelation time of this update
algorithm is much shorter than that of the conventual local
update [23]. This advantage enables one to concentrate on
the random sampling rather than consuming huge Monte-
Carlo steps for the thermal averaging.

We have found that even at the very broad bond dis-
tribution ∆ = 0.9, the ground state is still in the Haldane
phase with the correlation length kept hardly changed.
Our data reveled the astonishing stability of the Haldane
ground state against the bond randomness. On the con-
trary, the excitation levels are affected by the randomness
severely. The magnetic excitation gap, namely, the Hal-
dane gap, is found to be of the order of the weakest bond
strength ∼ Jmin = 1 − ∆. It closes as the randomness
approaches to unity ∆→ 1. To conclude, we propose the
phase diagram as is depicted in Figure 1b.

The present result supports the conclusion of the pre-
vious exact-diagonalization study [13], whereas it might
contradict to the analytic theory [14,15] which predicts

that for sufficiently strong randomness, the ground state
is in the random-singlet phase with diverging magnetic
correlation length, see Figure 1c. (The analytic theory
is founded in the power-law bond distribution, which is
broader than ours. Hence, the correspondence might be
not so straightforward.)

The exact-diagonalization study has a disadvantage
that the tractable system size is rather limited (L = 14).
Because our Monte-Carlo simulation, treating the system
sizes up to L = 64, clarified that the correlation length
remains unchanged ξ ∼ 6, the system sizes treated in the
exact-diagonalization study [13] are found to reach the
scaling regime. The exact diagonalization enables us to
access the ground-state eigenvector so as to yield various
physical quantities such as the spin-stiffness constant. The
spin stiffness is quite vital in studying the random sys-
tems. The stiffness was utilized successfully in the exact-
diagonalization study [13]. We claim that the conclusion
shown in Figure 1b is soundly established through combin-
ing the present Monte-Carlo simulation with the previous
exact-diagonalization analysis [13].

The Haldane phase is realized in the AKLT model [28],

HAKLT =
∑
i

Ji

{
Si · Si+1 +

1

3
(Si · Si+1)2

}
, (6)

as well; the ground state, the so-called valence-bond-solid
state, of the above Hamiltonian (6) is solved exactly. It is
notable that the valence-bond-solid state is proved to be
completely stable against the bond-randomness. Although
the model is rather different from our Heisenberg Hamil-
tonian (2), we conjecture that the essence of the stability
would be identical. This question should be solved in fu-
ture.

The present author would like to thank Professor S. Miyashita
for his stimulating discussion. Numerical simulations were
performed on the workstations DEC Alpha 533MHz of the
theoretical-Physics group, Okayama university.
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